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We develop a high-temperature expansion for general lattice systems which can 
be applied to classical as well as quantum systems. Applying the expansion we 
prove analyticity of correlation functions, uniqueness of equilibrium states, and 
cluster properties for classical and quantum lattice systems in the high- 
temperature region. 
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1. I N T R O D U C T I O N  

Our purpose here is to develop a high-temperature expansion method for 
statistical mechanical systems on lattice spaces which can be applied to 
classical as well as quantum systems. There are many  previous studies of 
classical lattice systems (2'3"5'7'9"1~ and quantum lattice systems (6"1t~ at 
high temperature and small activity by means of expansion methods, and 
various properties such as analyticity of the pressure and the correlation 
functions, clustering, and uniqueness of equilibrium states were well estab- 
lished for a large class of models. But the known methods (~'s'~4) for classical 
lattice systems cannot be applied directly to the quantum lattice sys- 
tems. Also it seems not obvious that the expansion method for quantum 
systems (6'11) can be applied to general classical lattice systems. (In princi- 
ple, it may be applicable to discrete and bounded classical spin systems.) 

Recently we came to know that Fr6hlich (4) has found a cluster 
expansion which can be applied to classical as well as quantum lattice 
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systems under the condition that interactions are of finite range. He asked 
us whether it is possible to extend the method to a large class of interac- 
tions which are not necessarily of finite range. The high-temperature 
expansion we develop is in a sense a modification of Fr6hlich's method 
which can be applied to a general class of interactions. Our expansion 
method does not depend at all on whether the systems are classical or 
quantum. In this sense the expansion method can be viewed as the 
canonical expansion for general lattice systems. Applying our method we 
prove the analyticity of correlation functions with respect to temperature, 
uniqueness of equilibrium states, and cluster properties in the region of high 
temperatures. 

In this paper we confine ourselves to a high-temperature expansion for 
bounded lattice systems. However, the method can be extended to a class 
of unbounded classical spin systems as in Ref. 10. Also, with a slight 
modification of the method one may easily develop a small activity expan- 
sion for lattice gases. To make the main idea clear and to avoid additional 
notational complications, we will not consider those cases in this paper. 

Let us recall what we mean by a general lattice system. (8'14~ We first 
consider quantum systems and then we describe classical systems. Let 
A c Z" be a bounded subset in the u-dimensional lattice space Z" and let 
H be a finite-dimensional Hilbert space. At each site a E Z ~ there is a copy 
H~ of H. We denote 

HA = |  
a @ A  

gA = {A: A is a self-adjoint operator on Ha} (1.1) 

1 
tra(A) - dim H a Tr%A(A ) 

where Tr%A(A) is the trace of A on H A and dim HA the dimension of H a. In 
our formalism, an interaction �9 assigns to each nonempty finite subset X of 
Z p a self-adjoint operator ~(X)  on %x. Let A l f~ A 2 = ~. Then Ha,uA2 can 
be identified naturally with Ha, | H&. We shall also identify any operator 
A 1 on HA, with the operator A~|  on Ha, u&. In particular, for any 
X c A, ~(X)  is identified with an operator on HA. 

Throughout this paper we assume that the interactions we consider 
satisfy the following condition: There exists a constant ~ > 0 such that 

sup E II (x)II ~ (1.2) 
x E Z ~  x @ X C Z  ~ 

X finite 

where IlA 11 is the norm of A and IXI the cardinal number of X. Notice that 
finite-body interactions of short range automatically satisfy (1.2). Let 
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dia(X) be the diameter of X, defined by 

dia(X) = sup(Ix, - x2[ :x l ,x  2 E X } 

If q)(X)= 0 for d i a (X)>  6 for some 6 > 0, q~ is called a finite-range 
interaction. Let V(x), x ~ A, be the unitary operator corresponding to the 
translation by x. (14) If q~(X + x) = V(x)~(X) V(x)-  1, q5 is called transla- 
tion invariant. 

The Hamiltonian for A c Z" is a self-adjoint operator on %A given by 

H ~ =  E q)(X) (1.3) 
XcA 

We may omit the superscript ql, in the notation without any confusions. Let 
F ~ ~x0, for a fixed X 0 c A. The partition function and the equilibrium 
state are defined by 

Za~ = trA(e -/~"') (1.4) 

p~(F) = (Z~)-  ' tra(Fe-•", ') 

where fi is the inverse of temperature. 
In order to define a classical lattice system, one only need to replace 

% IS, a compact metric space 
/ 

Tr% [d/~, a probability measure on S 

%A / /SA = X~ ~A S~ 
by (1.5) 

trA IdeA • I-Ia~Ad~a 
�9 (X) [ ~(X) a real-valued function o n  Sx 

! 

H~,(x)I[ [ /[~(X)ll~ 

in our formalism for quantum systems. From now on we further restrict our 
attention to quantum lattice systems. To obtain the results for classical 
systems from quantum systems it suffices to use the above replacements 
together with the DLR equation (12) in place of Araki's Gibbs condition. 

We first state the main results for general lattice systems: 

Theorem 1.1. Let q~ be translational invariant or of finite range and 
let F ~ ~x0 for a fixed X 0 c A. Then, for sufficiently small complex fi, (a) 
there exists a constant M(fi)  > 0, with M ( f l ) ~  1 as fl-~0, such that 

IOtA(F)[ <-< IIFIIM(B) uniformly in a 

(b) the limit 

pC(F) = lim 0~ F 
a~z~ ( ) 
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exists as A tends to Z ~. Furthermore oC(F) is analytic in fi in a disk 
centered at fi = 0. 

T h e o r e m  1.2. Under the conditions in Theorem 1.1, the state deter- 
mined by pC(F) is the unique KMS state for the interaction qs. 

We next discuss the results on cluster properties. The interaction q~ is 
said to decay exponentially if there exist a positive constant m such that 

sup ~] ]]~b(X)Hemdia(X'e~lXl< ~ (1.6) 
x E Z ~  x E X C Z  ~' 

X finite 

where a is the constant given by the condition (1.2). For finite X~,X 2 c Z ~ 
let 

dist(X~,X2) = inf( lx t - x21:x I ~ X~, x 2 ~ X2} (1.7) 

For F~ ~ ~x, and F 2 E ~x2 we write 

pC(F, :F2) = oC(F, F2) - pC(F,)pC(F2) (1.8) 

where pC(F) is the equilibrium state in the thermodynamic limit. 

T h e o r e m  1.3. Let F~ E gx, and F 2 ~ (2x. Under the conditions 
stated in Theorem 1.1, the following cluster property holds: 

p B ( F 1 ;  f2)  ---) 0 as dist(X,, X2) ---) oo 

Furthermore if q~ satisfies the condition (1.6), then for any e > 0 there exists 
a constant M such that 

IoC( F,; F2)I <~ me-(m-e)d i s t (X , ,X2)  

Romark. Since there are well-known methods (3'5:~ to derive the 
cluster properties from the convergence of the cluster expansion, we will 
not produce the proof of Theorem 1.3. 

Finally we give a comment on the case of two-body interactions 
[q~(X) = 0 if IX] v ~ 2]. If interactions are two-body interactions, one may 
obtain more detailed information on the region of temperature where the 
cluster expansion converges. An explicit expression for the region can be 
obtained from Section 3 and Section 4 in a fairly straightforward manner. 

We now summarize the content of this paper. In Section 2 we develop 
the cluster expansion. Using the fundamental theorem of calculus and an 
inductive argument we prove that the expansion converges absolutely and 
uniformly in A for small [fi[ in Section 3. In Section 4 we construct 
thermodynamic limit equilibrium states by using the cluster expansion and 
a method of integral equations. Employing Araki's Gibbs condition (I) we 
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show in Section 5 that the equilibrium state constructed in Section 4 is the 
unique KMS state. 

. T H E  C L U S T E R  E X P A N S I O N  

In this section we develop a high-temperature expansion for o~(F). 
For each X c A we assign a real number s x, 0 < s x < 1. Let 

(~)~(A> = ( ~ :  x ~ ~(a))  

62(A) = {X :X c A, Xv~ q)} for A va q~ 

~(r = (0) 

For a given {S}e(a ) we define 

H(('}~(A>) = E , , ~ ( x )  
X c A  

ZB({S).~(A) ) = trA(e-Bn((').,,)) 

p~(r ) ({s ) (~(m)  --- [ Z~({ S)~(A))]-' t rA(e-r  

From the above notation it follows that 

H((0)~(A>) = 0, H({I}<:~(A>) = HA 

ZP((1},:~(A>) = Za P and 0~(F)(tl}~,,(A>) = o~(F)  

(2.1) 

(2.2) 

We want to derive an expansion for 0~(F)({1)~p(a)) that converges uni- 
formly in A c ZL 

If A c Z ~ is finite, we may first study 

f({s}~(A) ) = trA(e-BmI')':'<,',)F) (2.3) 

for F E ~Xo, X0 C A. We are interested in an expansion for f({1 }~(A) ). The 
idea is a partial perturbation expansion in {s x : X  c A}. In order to define 
our expansion we need the following operations: For a given x c A, we 
define 

~ xf({ s)~,(A> ) = f({s)~(A)_ X, {1 )x) -f((s)~,(~)-x, (~  
(2.4) 

exf({s}~,(A)) = f ({S}e(A)_ x, {0}X) 

where 9(A) - X = 9(A)\{X}.  For a given ~5 c 9(A), let 

X E~3 (2.5) 
s ~ H ~X 

XE~  

We then have the following identity: 
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Lemma 2.1. 

f({ l)+xa) = E 8 ~/({0)+(A)) 
+c+ c_+(a) 

Proof. From the definitions in (2.4)-(2.5) it follows that 

/((1}+(~))= II (8 ~+cXV({s)+(,,)) 
x ~+(a) 

= ~ a%+(")'+~Y((~}+(A)) 
, b c ~  c @ ( A )  

= E a+Y((si+,i0i+(A~,~J 

Since 3+~f({s}<, (0},:e(m>~) = 6r for any (s}~, the lemma follows 
from the above relation. �9 

We next decompose q~ into connected components: For a given 
q~ c 62 (A), we write 

= 6 ~  U ~ 2 U  . . .  UgD,, 

where ~ i  r ~ j  = r if i =~j, and 
r  = { X , , , X , , , . . . ,  X,,,, } is connected 

That is, for any X i,, and X i,~, there exist. X i,,, X i,~ . . . . .  , X,:,,, such that Xi, ~ N 
X~, + r q,. From Lemma 2. I we obtain the following: 

j I 

Corollary 2.2. 
t t  

6 +<~ 0 / ( (1}+(a) )  = E I-I f({ }<!~(A)) 
{tSi . . . . .  63,,} : i = 1  

+~3 i c o n n e c t e d  fo r  Vi  

r  C (~;'(A) 

For q~t . . . . .  ~ ,  there exists l > 0 components which we may assume 
without loss of generality to be ~ . . . . .  ~+, that have the property 

q~i U {-go} is connected Yi = 1 . . . .  , l 

Equation (2.3) shows that 

( f { s } r  {s}+~ ~i  

( = f  {s}~ e . . . .  {s}~,, {O}+rA)\ ~3 i Z~({s}%, (0}+(A)\%) 
�9 i = 1  j 1 
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We keep ~3~ . . . . .  gS~ fixed and first do a resummation over g~+~ . . . .  , ~ . .  
Let  

Corollary 2.3. 

U U X/j (2.6) 
i = l  X i j ~  i ] 

f ( (  1 ).e(a) ) = 2 
{~ . . . . .  ~3t}: i= 

q~i C @(A), g3 i connec ted  Vi 

c3. O {Xo} connec ted  Vi 

Proof. From Corollary 2.2 it follows that for a given X c A 
l 

a ( (  1 }~(a\x)) - E I-I 8%Ze((O}~(a\x)) 
( ~ l  . . . . .  ~1 ) :  i = l  

c~ i connec ted  Vi 

%~ n ~J = q' (i ~j)  
q, c qS~ C ff(A\X) 

The  corollary follows from Corollary 2.2, the factorization proper ty  of 
f ({s )~ ,  . . . . .  { s ) ~ ) ,  and the above expansion. I 

Next  we change the summat ion nota t ion in Corollary 2.3 into a more 
convenient  form. It is easy to check that 

2 . . . .  2 2 - . -  

(~o, . . . . .  ~,}: g, cXcA (X~ .... .  X~} c~(A) 
~ i  N ~7 = @ ( i ~ j )  XoC~X:/= ~ ( X ~ )  U X  i = X 

eA i connected,  ~3i c @(A) ( X o , X  t . . . .  , X,, } connected  

~3 i U {X0} connected  

(2.7) 

For  given X o, X c A we define 

K#(Xo, X, f )  = ~, I fl6xf((O}~(A))] (2.8) 
( X  l . . . . .  X n )  C63(A) i = l  L J 

U X i = X  

( Xo ,XI  . . . . .  X~ ) connec ted  

F rom Corollary 2.3, the definitions in (2.2), (2.3), and (2.8), and the relation 
(2.7) we conclude the following. 

Theorem 2.4. For  F E @Xo, Xo C A, the following identity holds: 

o#(F)((I}@(A))  = ~ ,  K#(Xo,X, f )  gB({1}~(A\XUXo) - 

Xon x ~  (x~q~) 

This identity is called the cluster expansion for general lattice systems. 
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3. CONVERGENCE OF THE CLUSTER EXPANSION 

Our task in this section is to prove the convergence of the cluster 
expansion uniformly in A for small real ft. In the next section we will 
extend the result to complex fl, using integral equations. We also collect 
some basic estimates. The basic tools are the fundamental theorem of 
calculus and an inductive argument similar to that used in the work of 
Kunz. (1~ We will rewrite the cluster expansion using the fundamental 
theorem of calculus: 

8Xf( { s}~(A)- X , {O }x )  =~01 

i=1 

dsx ~ f({s}~(A)) 

(3.1) 

Therefore we have 

I~Xf({0}p(a))-~'~0" " " ~OI'TTdSxI H ~SXi i=1 i=l 

We write 

c =-- sup 2 II~(X)ll 
x ~ Z ~ X ~ x  

We will need the following estimates: 

f ({S}{x,  );, {O}e(a\u x,)) 

(3.2) 

(3.3) 

Lemma 3.1. (a) For real fl 

Z/~({ 1 )e(A\x )) < e~l/~i IXi 
Z/~({ 1 )~(a)) 

(b) For complex fl 

We will extend Lemma 3.1(a) to complex fl in the next section. 

Proof of Lemma 3.1. (a) We note that for X c A 

H A = HA\ x + I2Ix 

E +(r) 
YcA 

Y C~X ~ep 
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and 

If q ll ~ Ixl  sup 2 ]I~(Y)[I 
x E X  Y ~ x  

<. clXl 
where the constant  c is given in (3.3). Hence, by the Peierls-Bogoliubov 
inequality(t4'~5) one obtains 

tr(e-~H~) = t r (e -PHA, , -P~  ) 

/> tr(e -BH.~,~ )e-I/~l Ilti~ll 

> tr(e-~H.,,x )e-~lBI IXl 

Since for any X c A 

Z~({ 1 }r = tr(e-/~Hx ) 

Part (a) of the lemma follows from the above inequality. 
(b) We recall a useful formula: Let B = B(X) be a bounded operator. 

Then 

d-~e B(x) =fo'dse'B(~)B'(X)e"-s '8(x)  

Next, let B(X 1 . . . . .  ~n) be a bounded operator which is linear in each X i. 
Then 

0 n x.) ("  x.) 
0X, ee(x ...... = ~ 3z~ I-[dsie"B(x ...... 

�9 . . i - i ~ p .  

• B (Xi, . . . ,  X.)e '2a(x ...... xo ) . . .  
OXN(I) 

X ~ B ( ) k l , . . .  , Xn) 
OXfV~) 

X exp 1 - ~'~ s i B(X 1 . . . . .  Xn) (3.4) 
i= l  ] 

where An= (s 1 . . . . .  sn:0~< si, ~7=lSi = 1} and P,  is the permutat ion 
group of (1 . . . . .  n}. Hence 

0X, - 0At e B ( )  ~< n! IzXnl ~ 
i= 

and [A,] = l / n ! .  We apply the above result. It follows from (3.2) and (3.5) 
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that 

L 
< i=1 f l  ~oOSX, trte-PH({s)~*~)"'(~ 

< ~=llfil H((s){x,l?(O}) eLBIklH({shx,h)lltlF[I 
i =  i 

Here we have used the fact that for X = U X i 

I IH((s}(x,) r ,{O})l l<lXlsup 2 Ile(Y)l! 
x E X  Y ~ x  

< cIXl 
This completes the proof of Lemma 3.2. �9 

For finite X o, X c Z '  we define 

FP(Xo,X;~) = ~. ( H__ ,fi,[,a)(Xi),,) (3.6) 
(X~ . . . . .  Xo}c'2(X) i 

O X i = X  

{Xo, XI . . . . .  X. ) connected 

We now combine Theorem 2.4, Eq. (3.2), and Lemma 3.1 to conclude that 

Ipt~(F)((1}e~(a))l ~< [IFH ~ e2Clt~l(IX~ X;r (3.7) 
q~cX c A  

X N X0-#r (X~q,) 

The term corresponding to X---0 in the summation ~ x  is 1. In order to 
show the convergence of the cluster expansion we have to bound the 
right-hand side of (3.7) uniformly in A for sufficiently small ft. 

We write 

f~(X) = IB[ H~(x)[I 

fr = 1 (3.8) 

Let X =/= 0 and Y be finite subsets in Z L For X N Y = 0, we define 

A(X,Y)= E fl f~(Y~) (3.9) 
{Yt . . . . .  Yn) C@(X O Y): i = l  

Y C U Y i c X u Y  

( X, YI . . . .  , II. } connected 

I(m,n) = sup E A(X, Y) (3.10) 
X Y 

I X i = m  IYl=n 
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The following is one of the basic estimates in this paper:  

Proposition 3.2. For  sufficiently small Ifil, there exist constant  c 1 
and  A( f i ) ,  with A ( f l ) - e  1 as Ifi[-->0, such that 

I(m,n) <~ ]t~[qA( B)m+'ec4~lme - ' /4  

where the constant  a is determined by the condit ion (1.2). 

Proof. We prove the proposi t ion by an induct ion with respect to m 
and n. Let X '  = X - { x } for a fixed x E X. We isolate the contr ibut ion of 
f~(Xi) for the set X i containing x in A(X, Y). From the definition of 
A (X, Y) in (3.9) it follows that 

A(X,Y)= WEEXUY E h fp(Wi A(X'U W',Y\W') 
q,C . . ,  Wn) C ~ ( W )  i = 1  
x~W(WV=~)L u w , =  w 

x~ W,(W,~,~) 
(3.11) 

where the contr ibut ion corresponding to the case of W = 0 is A (X' ,  Y). We 
break the sum over W into two parts: 

E = E +  E 
W W c X  W A  Y~e;, 

Let x + X = { x } U X for any X C Z ~. Then  it follows f rom (3.11) that 

, c  x: (%~ . . . . .  %.,} c~:~(%): i=1 
t x c X ( % ~ * )  uxi = x 

xt (x', Y) + E 
q,r TC_Y 

! 

E FI fB(x + 
{Ti . . . . .  T1} C#J~(TU X'): i = I  

T C  U T i c T U X '  
Tin  T ~ O  

1 
X A ( X '  U T, Y\T)I (3.12) 

J 
In  the above expression, A (X' ,  Y) = 0 if X '  = q~ and the summat ion  over T 
is zero if Y =  ~. 
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We first note that, since fB ~> O, 

q5 C .,V C X (X,  . . . . .  y , , ,}c~:f fZ)  i = 1  

x ~ X ( X ~ , )  uZ=x" 
e,g, (z~,) 

We define 

I i m E ~, 2 f,(z) 
m=0 ZcX: 

x~Z  

< ~.. IBi E I[~(Z)lt 
m = O  Z C Z  ~ 

x ~ Z  

~< e Clpl (3.13) 

l 
a(k)~ 2 2 II fB(x + r,) 

T : I T I = k  ( T I  . . . . .  Tt }  C 6 d ( T U X  ') i = l  

T C  u T ~ c T U X '  

T,N T~q  
From condition (1.2) we obtain the following bound: 

/ 

(3.14) 

TzlTI=k {Tt . . . . .  T~}C~(TUX') i=l 
T C  u T t C T U X "  

T~n T=q, 
oo 

"e-ak/2El= l ~'71[ ~,C ~Zc Z p ]~[ l l~) (x+Z)ealx+Z{/2]  t 

<~ e-~k/2(e I~lc'- 1) 

< e-~k/21 fllCl (3.15) 

for some constant cl(a ). Combining (3.9)-(3.15) we conclude that 

I(m'n)<'ecl~l[I(m-l'n)+lB'e'~e-~/2I(m-l+k'n-k)j~=, 
(3.16) 

Notice that I(0.1) = 0 by the definition of d (X, Y), and 

I (1 ,0)  = sup Ifll ilq~(x)l[ 
x E Z  ~ 

<~ eClBI 

I ( 1 , 1 ) =  sup [1 + f ~ ( x ) ] f ~ ( x , y )  
x ,  y E Z  ~ 

xvLy 

4(1  + Ifilc)lfl[c 

~< eCIBIc,I file -~/4 (3.17) 
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for some constant cl(a ). By choosing 

A ( i )  = 1 + c,lfil k e-(~/4-"lebk (3.18) 
k = l  

which converges for l i  I ~< a/4c  and tends to 1 as [Ell--)O, the proposition 
follows by induction from (3.16) and (3.17). [] 

We now prove the convergence of the cluster expansion: 

Theorem 3.3. For sufficiently small real fi, the cluster expansion 
converges absolutely and uniformly in A. Furthermore there exists a 
constant B(f l )  such that for F E ~x0 

[,oB(F)(( l }q,(A)) I ~< I[Flle4<XolB(fi) 

where B(fi)--> 1 as l i t-->0. 

Proof. In (3.7) we break the sum over X into two terms: 

E 
0 c X c A  

x n Xo~=~ (x~r 

The first sum is bounded by 

~a e2CtBl(IX~ 
Oc_X C_Xo 

= E + E (3.19) 
@CX C_Xo X ~Xo 

X ~Xo~q) 

(X  1 . . . . .  Xn }c62(X) i=l  
U X i = X  

< e3<311X~ 2 l 2 fB(Z) 
n = 0  ~ Z C X  o 

,=o 7., IXol sup 2 f (z) 
x E X o  Z ~ x  

< e4Cl/~l IX01 (3.20) 

by (3.14). Let Y = X \ X  o. Then the second term in (3.19) is bounded by 

e2<~llX~ E e241qlx\x~ E f i  fB(Xi) 
X~-Xo {X I . . . . .  X,,} C ':?(X ) i = 1  

X nXoT='# U X~ = X 

{ Xo, XI . . . . .  X,, } connected 

~< e24PIIX~ E e2clfl]]Yl E ~ I  f B ( r i )  

@~-Y {Yl . . . . .  Yn}: i = 1  

Y c  Y~CXoU Y 

Yi=/- ~ ( i v ~ j )  

<~ e 2clBl[X~ ~,, e2clplJrlA(Xo, Y)  (3.21) 
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by the definition of A(X, Y) in (3.9). From (3.10) and Proposition 3.2 it 
follows that 

E e2cl~llrlA(Xo ' Y )  < ~ e2CIBLIrlI(IXo['n) 
o ~ y  n = l  

<<. Jfi[c,A( fi)tX~176 ~ [ A ( f i ) e  (a/4-2[fll)] n 
n = l  

<<. [/3 ] c l c zA IX ole r /~11Xol (3.22) 

for small fi such that A(/3)e -(~/4-zl~l) < 1. By choosing 

B( fl ) = 1 + I /3[c~c2A ( B ) 'x~ 

the theorem follows from (3.7) and (3.20)-(3.22). II 

4. INTEGRAL EQUATIONS AND THERMODYNAMIC LIMITS 
OF EQUILIBRIUM STATES 

In this section we prove the existence of the thermodynamic limit for 
O~A(F) for sufficiently small complex fl, and establish the analyticity of 
infinite volume expectations. We will combine the cluster expansion with a 
method of integral equations of Kirkwood-Satsburg type. ('4) We first state 
the main result in this section: 

Theorem 4.1. Let (I) be translation invariant or of finite range and 
let F ~ ~x0 for a finite X o c Z". Then for sufficiently small complex fl, (a) 
there exists a constant M(f l )  such that M ( / 3 ) ~  1 as f l -~0 and 

]p~(F) I <-< IIFIIM(/3), uniformly in A 

(b) the limit 

p~(F) = lim O~ g A,z  ( ) 

exists and is analytic in/3, for I fil sufficiently small. 

At the end of this section we will give the region of convergence for 
two body interactions explicitly, 

For X c A we define 

1 )r )) (4.1) 
) 

A priori we know that g~A(X) is defined for real ft. In the later part of this 
section we will show that g~(X) can be extended to complex fl via a 
method of integral equations if I fll is sufficiently small. In order to prove 
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Theorem 4.1 we need the following result: 

Proposition 4.2. Under the conditions in Theorem 4.1, (a) there 
exists a constant c independent of fl and A such that 

[g~(X)l ~ e4Bflxl 

Furthermore g~(X) is analytic in the region of small/~. (b) The limit 

gr = lira gCa(X) 
A?Z" 

exists and is analytic in the region of small I Pl. 

We first show Theorem 4.1 by applying Proposition 4.2. 

Proof of Theorem 4.1. (a) This follows from Theorem 3.3 and 
Proposition 4.2 (a). (b) Since g~(X) is analytic in the region of small/9 by 
Proposition 4.2, p~({1}e(a)) defined by the cluster expansion in Theorem 
2.4 is also analytic. Therefore, by Vitali's theorem and Theorem 4.1(a) it is 
sufficient to show that for small real B the limit 

p~(r) = M'z ~lim p~(F)  (4.2) 

exists as A tends to ZL By Theorem 3.3 the cluster expansion for p~(F) 
= p/~({1},~(a) ) is absolutely summable, uniformly in A for small real ft. 
Hence to prove (4.2) it suffices to show that each term in the expansion 
converges as A + Z  ". For given X (finite), the expression K~(Xo,X;f) 
defined in (2.8) is independent of A for sufficiently large A. Since g~(X) 
converges as A-~ Z p by Proposition 4.2(b), each term in the cluster 
expansion converges as A + Z P. This completes the proof of Theorem 4.1. 

II 

In the rest of this section we prove Proposition 4.2 by using integral 
equations. The equations we are considering are of the Kirkwood-Salsburg 
type. We first consider g~(X) defined by (4.1) for real fl, which is well 
defined. We want to derive an integral equation for g~(X). From now on 
we suppress the superscript B in g~(X). 

Let f be a function defined on the set of finite subsets of Z". Such 
functions form a Banach space 0y~: 

~y~= {f:flfll=sup~-Ixl[[(X)[< o e , ~ >  0} (4.3) 
x 

We propose to derive an equation of the form 

gA = ~ + KA gA (4.4) 
g= +Kg 
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where ~(q~) = 1 and ~(X) = 0, with I[KAII < 1 uniformly in A and 

IIKA-- KI]-~O as A--+Z ~ 

Then it follows that 

gA = (1 - 

gang  as A ~ Z  ~ 

For details we refer the reader to Refs. 13 and 14. 
We now apply the cluster expansion to derive (4.4). We fix a point 

x o ~ X. Then, since 

ZB((l}(";(a\x-x~ YcA\XI-I-xo:(6Y + eY)IzB({1}+P(A\X-x~ 
Xo~ Y 

= Z/~(( 1 )~(A\x )) + fA(( 1 )(s'<A,x )) (4.5) 

where 

fA((1)~;<A\x)) -- ~] f l  6v' Zfi({1)~'J'(A\x xo)) (4.6) 
(Y1 . . . . .  Y,,}: i=1 

Xo~ Y~cA\X- xo 
it follows that 

Z~({I),+<A,x)) = Z/~({ 1)~(A\X_~o))--fA({1}~aA\x)) (4.7) 

We apply the cluster expansion to f. The role of A is now played by A\X;  

fA((1 }~(A\X )) = X f i  ~Y'] 
(rt ..... y~}: i = l  

q ~  g +~  Y j ( i ~ j )  

Xo ~ Yi C A \ X  - x 0 

Following the process used to prove Corollary 2.3 and Theorem 2.4 we 
arrive at the following identity: 

fA(( 1 )+<A,x 0 = E KP((Xo},S;Z#)ZP((1)~;<A\xos) ) (4.8) 
0=/- S c A\X- x o 

xo~S 
where K~((Xo}, S; Z/~) has been defined in (2.8). For any complex/3 and 
f ~ if, we define an operator K on 9-~ by 

( Kf)(ep) = 0 
(4.9) 

(Kf)(X) = f ( X -  xo) - ~., KB({xo),S;Zfi)f(X 0 S) 
~ScZ~\X-xo 

Xo~ S 

I I  ( 8 W +  

WcA\X 
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for X 4= ~. We introduce the operator XA on ~-~ defined by 

(xAf)(X)  = XA(X) f (X)  for all f E oy~ (4.10) 

where XA(X) = 1 if X C A and xA(X) = 0 otherwise. Let ~ be the element 
in g~ defined by ~(q,) = 1 and ~(X) --- 0 otherwise. Then, from the definition 
of K in (4.9) and the fact that ga(4') = 1 we obtain the following lemma. 

Lemma 4.3. 

gA = ~ + XAKXAgA (4.11) 

The above relation is the integral equation of the Kirkwood-Salsburg type 
we want to derive. Beside (4.11) let us consider also the equation 

g = ~ + Kg (4.12) 

In both (4.1 I) and (4.12) we will allow/3 to be complex, using the following 
proposition. 

Proposition 4.4. For sufficiently small complex fl and for ~ = e ~/8, 

IIxAKXA[I < 1 uniformly in A 

and 

]IKI] < 1 

Proof. From the definition in (4.9) and (4.10) we get 

rI%AKXAII ~ e - ~ / 8 +  sup ~ ,  ]K~({Xo},S;Z~)le <sl/* 
x o ~ Z  ~ x o ~ S  

< e - a / s +  sup ~ e(Cl~f+"/8)lSIF~((Xo},S;4#) (4.13) 
x o ~ Z ~  x o ~ S "  

where the quantity F~((Xo}, S; ~P) has been defined in (3.6). Here we have 
used Lemma 3.1(b) to get the second inequality. Using the notations in 
(3.8)-(3.10) we obtain 

O<3 

IIxAKxAtl < +1,8111 '(xo)ll + Z ") (4.14) 
n = l  

We apply Proposition 3.2 to conclude that 

JlxaKxall < 1 

for small complex/3. To prove [IK[] < 1 we only note that ]lKll is bounded 
by the right-hand side of (4.13). This completes the proof of the proposi- 
tion. [] 

We finally prove Proposition 4.2. 



570 Park 

Proof of Proposition 4.2. (a) Since g,~ satisfy (4.11) for real fi, 

gA = (1 -- xAKxA)-'1 (4.15) 

for small real ft. Furthermore, since XAKXA is analytic in fl, one may extend 
(4.15) to complex fl, for small I fll. Notice that 

1] gAH = supe-<xt / s  l gA] 
X 

and 

II gall <11(1- XAKXA)-' II 
< const 

for small [fl[. This proves part (a) of the proposition. 
(b) Using an argument in Ruelle, (14) part (b) of the proposition will be 

proved if we can show that for A c A' c A" 

/IXAKXA . -- • II < ~(8)  

where 8 is the minimal distance from A to the boundary of A' and ~9(8) 
satisfies lima_~oo~(8 ) = 0. This inequality follows from 

I XA(X)(KXA" f ) (X  ) -- xA(X )(KxA,f)(X )l 

< E Ii  ((xo},s;z )Iif(xus)( 
S c Z " \ X -  x o 

x o ~ S ~ A "  

X C A  

From this and Lemma 3.1(b) we get 

IIxAKxA"- xAKxA']] < TI(8) (4. t6) 

7/(8) < sup ~ F#((Xo},S;~)e ~cj~l+~/8)lsl 
x o ~ A  x o ~ S  ~ A '  

If �9 has finite range, i.e., ~(X)  = 0 if dia(X) > 8 o for fixed 8 o, then the 
number of ~'s in FB((Xo), S; cb) is greater than 8/80 [see the definition of 
F ~ in (3.6)]. Thus it follows that [SI > 8/8o and 

oo 

n(8)< Y, e~<el+~/8~'I(1,z) 
l >1 a / a o  

by the argument used in (4.14). From Proposition 3.2 we conclude that 
~/(8)~0 as 8 ~ o o  for small B- 

On the other hand if ~ is translation invariant, 

~(8)  = ~ ekll31+~/sllSlFe((xo}, S; ~) 
xoeS ~-B~(xo) 

x o fixed 

where Ba(xo) is the ball of radius 8 centered at x o. 
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Since 

. . , 

xo~S 
x 0 fixed 

is summable, see (4.13)-(4.14), we conclude that r/(8)--~0 as 8--~ oc. This 
completes the proof. [] 

5. UNIQUENESS OF KMS STATES 

Our next task is to show that the state defined by the limit 

o~(F) = A~'z ~lim pB (F)..(( 1 } ~(A)) 

is the unique KMS state for a given interaction q~. In order to show the 
uniqueness we must show that any KMS state corresponding to ~ coincides 
with p~(F) for small ft. Let ~B(F) be a KMS state for given �9 and a t the 
time translation automorphism corresponding to (I). (1<~6) Let ~B be the 
cyclic vector corresponding to ~ ( F )  and h the generator of the modular 
automorphism group corresponding to (~B, at).(14,t6) We define 

n~(O)= E ~ ( X )  
X c A  

WA,A = E 
X: 

X • A v ~  
X n A ~ # o  

k(A) = H A + WA,A~ (5,1) 

h(A) = h - k(A) 

Uk(A)(S ) = e sB{h-k(A) l= e sBh(A), 0 <~ S <~ 1 

We denote for finite A, X c Z ~ 

0 ( A , X ) =  { Y : Y N A v ~ 0 ,  Y A X = e ~ }  
(5.2) 

= 

Let ~/~(F)((0}~(~)) be the state on gXo defined by 

~ ( F ) ( { 0 ) ~ ( A ) )  = N-'(Uk(A)(�89189 ~) (5.3) 

where N is the normalization factor. We now recall Araki's Gibbs condition 
[1]: 

OB(')((0}O(A)) = trA(') | %v( ' )  (5.4) 
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where ~0:,,. is a KMS state on ~ .  We now construct ? r  }~(F) 
({1).~(~)) from ?r by means of the cluster expansion. We 
denote the cyclic vector corresponding to ~ r (.)({ 0 } ~(a) ) by IIr (( 0 } ~(A) ) 
and tl e = ~/~({ 1}~(m). We define 

k((~)~(,3= E s~(x) 
X : X nA~-q,  

We set 

h((s}r~(A)) = h(A) + k((s}~(a)) 

2 f l ( ( S }  ,~ , (A))= (~'~fl((O}Ky(A)),e-flh({s}~AI)~'~B((O)~(A))) 

• Fe-r 

Clearly we have that for F ~ ~Xo, Xo C A, 

O e ( F )  - 
Z~({ 1 )~(A)) 

We want to show that for small/~ 

~B(F) = o~(r)  

where p~(F) is the state given by the limit 

(5.5) 

(5.6) 

for any A (5.7) 

(5.8) 

p~(F) = Aliq,mop~(F)({ 1 }~(A)) 

in the previous section. That is, ~/~(F) is unique and is independent of 
boundary conditions. 

To prove (5.8) we apply the cluster expansion to ~ (F) ({  1}~(A}) for 
F E ff'Xo, Xo C A: 

[0, ] / ( (1)~(m)--  (B,, .... E ~,}: ,'= B~?({0)~(A)) Z~((1}~(A,X(Xo.(~,)))) 

~;  connected, 4 ;  C 9(A) 
6~; n ff3j = q~( i~ j )  

6s U {Xo} connected 

Here we use the factorization property of Z ~ in (5.3) and the method used 
in the derivation of Corollary 2.3. Dividing by Z~({1}~(a)) and applying 
(2.7) again we have the expansion 

~(F)((1) ,~,3 = E /c~(x0,x; i ) ~ ( x  u x0) (5.9) 
~c_X: 

X n A ~ ,  
X n Xov6 ~, 
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where 

7B((  1 } ~?(A,x )) (5.10) 
gA(x) = Ze((l)~(A> ) 

We state the main result of this section. 

Theorem 5.1. Let �9 be translational invariant or of finite range. 
Then for small complex/9 

~e(F) = oe(F) 

where the state pP is obtained by the limit 

Off(F) --- lira o~(r)({1}~,~(a)) 
A ? Z  ~ 

as in Theorem 4. t (b). 

We devote the rest of this section to the proof of the theorem. 

Proof of Theorem 5.1. Because of Theorem 4.1(b), it suffices to 
show the theorem for real ft. The basic strategy is to compare the expansion 
of oe(F)(( l} , , (a))  in Theorem 2.4 to that of ~f(F)((1}~(a))  in (5.9). We 
show that the difference between the two expansions tends to zero as 
A--> ZL 

We break up the sum ~ . , cx  in (5.9) into two terms: 

E = E + 
q ~ c X :  q, C X :  ,#C_X: 

X A A ~ o  X C_A X ~ A , X  ~A~-q, 
X n X o ~  xnxov~r  x n x o ~  

= E (') + E (~ (5.11) 
x x 

Let us denote f o r j  = 1,2 

P(~)(F)({ 1 }~(m) =- Z (J)F(Xo, X; j?)~(X U Xo) (5.12) 
x 

We will show that 

~(r as A - ~ Z "  (5.13) 

Assume that we can prove (5.13). Then 

~f i (g)  = ~ f ( / ) ( (  l }~(A)) 

= lira ~ ) ( F ) ( ( 1 } ~ ( A ) )  (5.14) 
AI ,  Z ~ 
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as a consequence of (5.9) and (5.11)-(5.12). We then show that the 
right-hand side of (5.14) converges to p~(F) for small/3. 

We first prove (5.13). Following the method used in the proof of 
Lemma 3.1, we obtain the bounds 

gA(X) < er 

n 

i~=18x]({O}vs(A))< I[FIl(i~=l]BII]~(Xi)l])ed~lluX'l (5.15) 

Using (5.15) and following the arguments used in the proof of Theorem 3.3 
step by step, one may easily cheek that the right-hand side of (5.9) 
converges absolutely and uniformly in A. From this it follows that ~(P2)(F) 
({ 1 }~r tends to zero as A---> Z ~ for small real fi. This completes the proof 
of (5.13). 

We now prove that 

p/~(F)({ 1 ),~(a))= l~mfig,)(F)({ 1 }~(A)) (5.16) 

By the Araki's Gibbs condition in (5.4) we have the identity 

f i  8Xf({0}~2(A))----- fi 8Xf({0}~(A)) for X c A, X =  UX~ (5.17) 
i = 1  i=l  

where f({0}~(A)) is given by (2.3). We use (5.17) and (5.12) to get 

~1)(F)({ 1 )+(A)) = ~] Ke(Xo, X; f)gA(X U Xo) 
q~cX: 
X c A  

X AXo~(x ,~e , )  

The above expression converges absolutely and uniformly in A by (5.15) 
and Proposition 3.2 for small/3. Thus by comparing (5.17) to the expansion 
of p~3(F)({ 1 }~(A)) in Theorem 2.4 term by term, (5.16) will be proved if we 
can show that 

lim gA(X)= lim ~,A(X) (5.18) 
A I " Z  p A ? Z  ~ 

for small ft. 
To prove (5.18) we again apply the method of integral equations for 

ga(X). Using the method used in (4.5)-(4.8) one may get the following 
equation: For a fixed x 0 E X 

L , ( x )  = gA(x  - Xo) - 
Cv~ S E~(A,X- xo) 

xo@S 

X e ( { X o } , S ; Z e  )ga(X u S )  

(5.19) 
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Again we break up ~ s  into two terms: 

E = E + E 
~,~_S~6~(A,X_xo) g ~ ( A \ X - x o )  S: 

Xo~ S Xo~ S S ~ A \ X -  x o 
x o ~ S  

We define 

(5.20) 

satisfies the equation 

Since the right-hand side of (5.19) converges absolutely and uniformly in A 
by (5.15) and the argument used in the proof of Proposition 4.2(a), we 
conclude from (5.19)-(5.21) that 

e A ( X ) ~ 0  as A ~ Z  ~ (5.22) 

for small ft. We also note that 

fl6s'z~({O)~(A))=fl6S'z~({O}~(s)) for S c A ,  S - - U S ,  
i = 1  i = l  

by (5.4) and (5.6). By the argument used in Corollary 4.3 we obtain the 
equation 

gA = ~ q" X A K X A  g A  q- CA (5.23) 

where K is defined by (4.9). Since eA(X )-~ 0 as A -~ Z ~ by (5.22) and since 
the limit 

g = lim gA 
A ~ 'Z"  - -  

g = 1] + Kg (5.24) 

by the result in Section 4, the limit 

g = lim ~'A 
A.I ,Z ~ - 

exists and satisfies the equation 

g = 1 + Kg (5.25) 

As a consequence of (5.24) and (5.25) we have proved (5.18). This com- 
pletes the proof of Theorem 5.1, �9 

e:x(X) = E Ke({Xo},S;Z~)gA(X tO S) (5.21) 
S:  

S ~ A \ X  - xo 

xoES  
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